Maybe a treemap would be better?

Consider this infographic about imprisonment, from this article on the American Legislative Exchange Council blog.   Most people would look at it and find it very engaging and attractive, which it is.  But, as a visualization expert, one wonders if the odd coloring variations in the outer ring of the main figure and in the “Juvenile” block at right, which just show how the larger wedges (categories) divide up more finely  (into sub-categories) wouldn’t be better shown in a Tree Map, using the ideas about showing hierarchical categories proposed by Ben Shneiderman in the 199os.   A Tree Map version of these data would almost certainly show the area of sub-categories and categories relative to each other (context) better than the snazzy graphic shown here.

Why (and what is) a “3D PDF”?

For hundreds of years, scientists have published their results in scientific journals that were printed on paper.  Today, though, most journals have gone entirely online.  Articles less and less frequently printed out and read on paper, so why should they still look and funciton exactly the way they did in the 1600s?

Josh Peek and I, and our colleagues wrote a fully online paper presenting The ‘Paper’ of the Future back in 2014, which highlights (with embedded demonstrations) many of the technologies available to scientists publishing today, and in the near future.   One particularly important technology–“3DPDF”– discussed in that paper of the “future” was actually first deployed in a Nature article by my “Astronomical Medicine” collaborators and me, way back in 2009.

Our challenge was to show the difference between two “segmentation” techniques used to define salient structures inside of star-forming regions.  The science isn’t important here (sorry).  What’s important is that we wanted to offer the “reader” multiple, interactive, views of high-dimensional data, inside of a journal article.

To see the PDF in action, take a look at this video, or download the “nature_demo” file and open it, on any Mac or PC, with an Adobe PDF viewer of any kind (not Preview).

Other authors (e.g Peek 2012) have since published methods for creating these 3D PDFs using free software, and a (perhaps too small!) number of authors have now embedded these 3D images inside of the scholarly articles.   Even though interactive images are clearly seen to add value to articles, they are not (yet) widely used.  3D PDF as a format may be short-lived, as articles move more and more to a fully online environment, where other (e.g. javascript-based) technologies can offer superior options.  BUT, the general idea of embedding data and interactive views of it, be they “3D” or not, is extremely valuable, and we will return to it in future posts–for now go have a look at The ‘Paper’ of the Future (Goodman at al. 2014).

Time-lapse view of an asteroid

Take a look at this image featured on the “Astronomy Picture of the Day” on 20 April, 2017.

 

The attribution and explanation on APOD reads:

Asteroid 2014 JO25
Image Credit: NASA, JPL-Caltech, Goldstone Solar System Radar
Explanation: A day before its closest approach, asteroid 2014 JO25 was imaged by radar with the 70-meter antenna of NASA’s Goldstone Deep Space Communications Complex in California. This grid of 30 radar images, top left to lower right, reveals the two-lobed shape of the asteroid that rotates about once every five hours. Its largest lobe is about 610 meters across. On the list of Potentially Hazardous Asteroids, this space rock made its close approach to our fair planet on April 19, flying safely past at a distance of 1.8 million kilometers. That’s over four times the distance from the Earth to the Moon. The asteroid was a faint and fast moving speck visible in backyard telescopes. Asteroid 2014 JO25 was discovered in May 2014 by A. D. Grauer of the Catalina Sky Survey, a project of NASA’s Near-Earth Objects Observations Program in collaboration with the University of Arizona.